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ABSTRACT
The real-world performance of slot filling and intent detection
task generally degrades due to transcription errors generated
by speech recognition engine. The insertion, deletion, and
mis-recognition errors from speech recognizer’s front-end
cause the mis-interpretation and mis-alignment of the lan-
guage understanding models. In this work, we propose a new
jointly trained model of intent detection and slot filling with
consideration of speech recognition errors. The attention-
based encoder-decoder recurrent neural network first decodes
the intent information from an utterance, and then corrects
errors in the word sequence, if any, before extracting the
slot information. The triple joint training framework max-
imizes the probability of a correct understanding given an
input utterance. Our experimental results showed that the
proposed model obtained 2.87% absolute gain over the joint
model without ASR error correction for slot filling and 0.73%
absolute error rate reduction for intent detection.

Index Terms— ASR Errors, Joint Training, Slot Filling,
Intent Detection, Attention-based Model, Recurrent Neural
Network

1. INTRODUCTION

Spoken Language Understanding (SLU) systems process lan-
guage expressed by human speech into a semantic represen-
tation understandable by the machines. SLU is the key com-
ponent of all conversational AI systems. The general tasks
of SLU involve intent determination and slot filling from an
utterance. The intent determination task can be considered
as a semantic utterance classification problem, while the slot
filling task can be tackled as a sequence labeling problem of
contiguous words. Previous approaches to solving these two
related tasks were typically proposed as two separated sys-
tems such as Support Vector Machines (SVMs) for intent de-
termination [1] and Conditional Random Fields (CRFs) for
slot filling [2].

Recent advances in neural networks, especially recur-
rent neural networks (RNNs), allow joint training model of

both intent determination and slot filling [3, 4, 5, 6]. This
framework showed advantages over the previous state-of-the-
art techniques, and has gained much attention in research
community. The success of joint models is contributed by
the attention mechanism [7, 8, 9] and the encoder-decoder
model [10, 11]. The attention mechanism allows optimize
selection of input sequence for decoding for both content and
location information.

In general, an SLU system is deployed as a downstream
task of spoken dialog systems where its inputs are outputs
from the front-end Automatic Speech Recognition (ASR) en-
gine. The errors in word sequences generated by ASR en-
gine cause the performance degradation of intent detection
and slot filling. In most real-world applications (e.g, far field
with noises and reverberation effect), such errors are still un-
avoidable even with deployment of more robust ASR tech-
niques. In this work, we propose a model which combines
error correction of ASR with joint intent detection and slot
filling training. We start with a joint model proposed in [6] as
our motivation and baseline, and then extend the framework
with error correction of input word sequence. The attention-
based encoder-decoder RNN first predicts user’s intent from a
recognized word sequence, corrects any recognized word er-
rors from ASR engine, and then extracts slot contents from
the predicted intent and context information.

We evaluated our proposed model on intent detection and
slot filling tasks using degraded audio generated by texts from
the ATIS corpus. We show that our purposed joint model can
improve the F1 score of slot filling and reduce intent detec-
tion rate, as well as reduce the word error rate of ASR output.
To the best of our knowledge, there has not been other work
published on jointly tackling ASR error correction, intent de-
tection, and slot filling.

This paper is organized as follows. In Section 2, we in-
troduce the background architecture of RNN with encoder-
decoder and attention mechanism. We describe our proposed
jointly trained model in Section 3. In Section 4, we discuss
the experimental setup and results. Finally, Section 5 con-
cludes our paper.



2. BACKGROUND

2.1. RNN Encoder-Decoder

The recurrent neural network (RNN) Encoder-Decoder frame-
work [10] [11] has been successfully applied in machine
translation [7] and text summarization [12]. The main idea
relies on a large network trained with an end-to-end fashion
which make it generalized well with wide range of word se-
quences. The first component, Encoder, computes a represen-
tation c for each input sentences, and hence the second com-
ponent, Decoder, generates one output word at a time based
on the conditional probability of previous words and c. That
is, the encoder represents input sequence x = (x1, ..., xTx)
with a vector c:

ht = f(xt, ht−1), (1)

c = q({h1, ..., hTx
}), (2)

where ht is a hidden state at time t. f , q are some nonlin-
ear functions. The last hidden state hTx

carries information
of the complete input sequence and can be used as c [11].
Consequently, the decoder defines a probability of the output
sequence y = (y1, ..., yTy ) as:

p(y) =

Ty∏
i=1

p(yi|{y1, ..., yi−1}, c). (3)

Note that Tx and Ty can be different, as there is no explicit
alignment between input and output sequences. However,
some problems like POS-tagging [13] require Tx = Ty to
have an exact alignment between input and output sequences.

2.2. Attention Mechanism

Attention mechanism was first introduced by [7], later mod-
ified by [14]. The attention concept allows models to learn
the alignment or attention weights by focusing on the rele-
vant elements of the input states h. In this work, unlike the
conventional encoder-decoder model, the decoder computes
a different context vector ci for every decoding step i as the
weighted sum over a sequence of input vectors (h1, ..., hTx

)
[7]:

ci =

Tx∑
j=1

aijhj . (4)

The weight aij is computed using a feedforward neural net-
work with hj and the previous hidden state si−1 as input. The
decoder RNN hidden state si is calculated as:

si = f(si−1, yi−1, ci). (5)

In this work, however, we employed global attention [14]
where a variable-length alignment weight vector aij is in-
ferred by the current target state h and all source states h̄,

as:

aij =
exp (h̄>i Wahj)∑
j′ exp (h̄>i Wahj′)

, (6)

where the decoder hidden state h̄i can be called query vector.
Given h̄i and the context vector ci, the attentional hidden state
h̃i is computed as follows:

h̃i = tanh(Wc[ci, h̄i]). (7)

The final output label is obtained by:

yi = softmax(Wph̃i). (8)

3. PROPOSED JOINTLY TRAINED MODEL

In this section, we describe our proposed model which is
jointly trained for intent detection, word sequence correction,
and slot filling. The underlying structure is based on RNN
Encoder-Decoder framework [10, 11] with one decoder for
each subtask. Similar to [7], the initial state of the decoders is
computed as:

s0 = tanh(Ws[fhTx
, bh1]). (9)

3.1. Encoder

The encoder consists of a bidirectional RNN with LSTM
cell as a basic RNN unit which reads forward and back-
ward through the input word sequence x. At each encoding
time step t = {1, ..., Tx}, the forward and backward hidden
states fht, bht are concatenated as the source hidden state
ht = [fht, bht].

3.2. Intent Decoder

Intent detection is considered as a classification problem;
therefore, the decoder produces a single label instead of a la-
bel sequence. This can be seen as a single step decoder RNN,
where the only hidden state h̄ is computed by Wis0. Eq. 4
and 7 are used to compute context vector ci and attentional
hidden state h̃. The intent label yi is predicted by Eq. 8.

3.3. Corrected-Word Decoder

The corrected-word decoder is a unidirectional RNN. At each
decoding timestep i, the inputs are the embeddings of the pre-
dicted intent label yi and the previously emitted word ywi−1.
We used scheduled sampling [15] to mix them with the true
labels during training. In conjunction with the previous state
si−1, the current hidden state h̄i of the cell is computed and
used to generate context vector cwi and subsequently atten-
tional hidden state h̃i using Eq. 4 and 7. The decoding stops
once Eq. 8 predicts the <EOS> token, which defines the last
decoding timestep Ty . In order to get a richer representation



Fig. 1. Attention-based RNN for jointly trained intent detection, ASR correction, and slot filling model. The encoder uses
bidirectional RNN. The intent decoder is a single step decoder RNN. The word decoder is a unidirectional RNN with the
context information from parts of the input sequence. The slot decoder is a unidirectional RNN with predicted intent label and
hidden state from the word decoder as inputs.

Input:
words show flights from boston to no work

Labels:
intent flight
words show me flights from boston to new york

slots O O O O
B-fromloc
.city name O

B-toloc
.city name

I-toloc
.city name

Fig. 2. Example instance from the extended ATIS dataset.
Chunks are marked by bold boxes.

of the predicted word output sequence yw, it is fed to the same
encoder structure as the input sequence. h′ are the newly pro-
duced encoder hidden states.

3.4. Slot Decoder

The initial state s0 of the unidirectional slot decoder RNN is
computed by Eq. 9 using fh′Ty

and bh′1. The inputs at each
timestep i = {1, ..., TY − 1} are the predicted intent label
yi embedding, previously emitted slot label ysi−1 embedding,
and the hidden state h′i. Again scheduled sampling[15] of the
slot labels is used to improve training. Current slot decoder
hidden state h̄i is used to calculate csi and subsequently h̃i

following Eq. 4 and 7. To get the output slot sequence ys,
Eq. 8 is applied at each time step i.

4. EXPERIMENTS

4.1. Data

In order to evaluate our model, we start with the widely used
ATIS (Airline Travel Information Systems) dataset [16], and

Fig. 3. ASR correction model learns to correct ASR er-
rors. Here, the encoder-decoder model learns to correct ”from
tampa to no walkie” as ”from tampa to milwaukee <EOS>”.

modify it by adding ASR hypotheses. The original dataset
has a training set of 4978 sentences from which we randomly
sampled 893 sentences for development set. The provided
test set also counts 893 utterances. For each sentence, there
is one of 18 different intent labels and a sequence of slots
as shown in Fig. 2. The 128 unique slot tokens follow the
in/out/begin (IOB) schema [17]. To produce ASR hypothe-
ses, we created audio for each sentence using Google Text to
Speech (gTTS) API1. In this study, in order to degrade the au-
dio quality such that the ASR errors started contributing to the
overall performance, we added white noise and reverberation
to the synthesized speech using the SoX tool. The recognized
text from the ASR engine is then fed to the NLU model. We
selected the top-3 hypotheses and add them as new instances
to the corresponding set. The intent and slot output sequence
are taken from the initial instance. Additionally the correct
transcription is added as the word output sequence for the ini-
tial and the newly created instances. This results in a training,
development, and test set of size 11841, 2583 and 2606 re-
spectively. Then number of unique words increases from 950
words to 3178 words. The word error rate (WER) between in-
put and output word sequence for training, development, and

1https://github.com/pndurette/gTTS



Models WER (%) Slot (F1) Intent Error (%)

Joint Slot&Detection 14.55 84.26 5.80
ASR Correction + Joint Slot&Detection 10.43 86.85 5.20
Proposed Joint Model 10.55 87.13 5.04

Table 1. Experimental results on the extended ATIS dataset.

Fig. 4. Attention-based encoder-decoder RNN model for joint
intent detection and slot filling.

test set is 13.80%, 13.64%, and 14.55% respectively.

4.2. Baseline

We compared our proposed jointly trained model with two
other serial models. The first model, as shown in Fig. 3, solely
learns how to predict the correct word sequence from the
given ASR hypotheses. The model is based on the Encoder-
Decoder framework previously described in Sec. 2.1. While
the encoder (Sec. 3.1) is identical to the one used in the joint
model, the decoder differs from the previously described
word decoder (Sec. 3.3) as it cannot take into account the
predicted intent label.
The model for intent detection and slot filling, as shown in
Fig. 4 is a modification of the Encoder-Decoder RNN with
aligned inputs & attention model proposed by [6]. The au-
thors showed that this model can achieve the state of the art
performance on the intent detection and slot filling. In our
proposed model, the slot decoder also takes the predicted
intent label as an input of RNN.

4.3. Model Training

We employed LSTM cell for all RNN units [18]. The sched-
uled sampling probability is set to 0.5 and parameters are
trained by Adam optimization [19]. We utilized scikit-
optimize (skopt2) to efficiently search for the best combi-
nation of hyperparameters. Word embedding of size 172
were randomly initialized and shared between encoder and
decoders with the slot embedding size is 38, and the intent
embedding size is 19. The mini-batch training size is 128,
with learning rate of 0.004 and dropout rate of 0.55 applied to
the non-recurrent connections. In the joint model the weights
of the input encoder are shared with the one applied to the
predicted word sequence.

2https://scikit-optimize.github.io

4.4. Evaluation Metrics

Quality of the predicted word sequence is quantified by word
error rate (WER). Intent detection is evaluated by classifica-
tion error rate, that is, the percentage of wrongly predicted
intent labels. Slot labeling performance is measured by F1-
score, similar as described in [20] for the CoNLL Chunking
Shared Task. Following the in/out/begin (IOB) schema [17] a
chunk begins with a ’B-X’ token and may be extended by an
’I-X’ token. The ’O’ token tags words outside of any chunk.
The same chunk tagged to the same word in the gold and pre-
dicted sequence is considered a true positive.

4.5. Results

Table 1 compares the F1 scores for slot filling and error rate
of intent detection among 3 RNN models. After degrading
the audio quality, the ASR engine generates the transcrip-
tions with 14.55% WER. We started our experiments with this
WER level as to reflect moderate ASR performance. Our pro-
posed jointly trained model (Intent + Word Correction + Slot)
outperforms the joint model (Intent + Slot) for both F1 and
detection errors by absolute 2.87% and 0.73%, respectively.
The proposed framework can also significantly reduce WER
of the ASR engine by 4% absolute.

To further support the benefits of the proposed joint train-
ing framework, we compare the proposed joint model with
the cascade of individual model of ASR correction followed
by jointly trained intent+slot model. The individual trained
model for ASR correction provides lower WER than the pro-
posed model as the main objective is solely to reduce the ASR
errors. However, the experimental results show consistent im-
provement of proposed joint model over the cascade of indi-
vidual trained models for both slot filling and intent detection.

5. CONCLUSION

In this paper, we proposed jointly trained model of intent de-
tection, ASR error correction, and slot filling. The attention-
based encoder-decoder RNN first detects intent of a sentence,
corrects any recognized word error from ASR engine, and
then extract slot contents from the predicted intent and context
information. The experimental results showed advantage of
the proposed jointly-trained model over the joint model with-
out taking into account the ASR errors and those individual
trained models.
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